

St. Pölten University of Applied Sciences, Campus-Platz 1, 3100 St. Pölten, T: +43 (2742) 313 228, F: +43 (2742) 313 228-339, E: csc@fhstp.ac.at, I: www.fhstp.ac.at

Landau Symbols
(Complexity Classes)
Theoretical Computer Science

Dipl.-Ing. Hubert Schölnast, BSc
September 20, 2021

 2/7

Table of Contents
1 Landau Symbols (Big O notation) ... 3

2 Big O (“big oh” or “big omicron”) ... 3

2.1 Example 1: .. 4
2.2 Example 2: .. 5
2.3 Counter example: ... 5
2.4 Conclusion: ... 5

3 Big 𝚯 (“big theta”) ... 6

4 Big 𝛀 (“big omega”) .. 6

5 Small symbols ... 6

6 Some important defining functions in big O notation ... 7

 3/7

1 Landau Symbols (Big O notation)
Laundau symbols are used to group functions together and give these groups individual
names. Functions that grow at similar rates as their argument gets larger and larger are
grouped together.

𝑂$𝑓(𝑥)), Ω$𝑓(𝑥)), 𝒪$𝑓(𝑥)), Θ$𝑓(𝑥)), 𝑜$𝑓(𝑥)), ℴ$𝑓(𝑥)) and 𝜔$𝑓(𝑥)) are different sets of
functions, which will be explained in detail later. Each of these sets is a container, and inside
these containers are functions. For each container there is a function 𝑓(𝑥), which defines as a
kind of role model which other functions are contained in this set.

𝑓(𝑥) ∈ 𝒪(𝑔(𝑥)) means that the function 𝑓(𝑥) is one of the functions in the set 𝒪(𝑔(𝑥)) defined
by the function 𝑔(𝑥).

When using Landau Symbols, you very often will also see this notation:

𝑓(𝑥) = 𝒪(𝑔(𝑥))

Technically this is a wrong notation, because it would mean, that the function 𝑓(𝑥) is equal to
a set of functions, which makes no sense. Nevertheless, it is a commonly used notation that
everyone understands as a synonym for 𝑓(𝑥) ∈ 𝒪(𝑔(𝑥)).

You say: “f of x is of (the) order g of x”.

Various symbols are used (𝑂,Ω, 𝒪, Θ, etc.). Some of them are simply different letters that have
the same meaning, but some other symbols have different meanings.

2 Big O (“big oh” or “big omicron”)
Equivalent notations (they all mean the same):

𝑓(𝑥) ∈ 𝒪(𝑔(𝑥))								𝑓(𝑥) ∈ 𝑂(𝑔(𝑥))
𝑓(𝑥) = 𝒪(𝑔(𝑥))								𝑓(𝑥) = 𝑂(𝑔(𝑥))

Formal definition
∃𝑘 > 0	∃𝑥! > 0	∀𝑥 > 𝑥!:		|𝑓(𝑥)| ≤ 𝑘 ∙ 𝑔(𝑥)

How to read this definition:

∃𝑘 > 0 For at least one (constant) value for 𝑘 that is greater than 0
 and
∃𝑥! > 0 for at least one value for 𝑥! that is greater than 0
∀𝑥 > 𝑥! it is always true for all values of 𝑥 that are greater than 𝑥!
: that
|𝑓(𝑥)| ≤ 𝑘 ∙ 𝑔(𝑥) the magnitude (the absolute value) of 𝑓(𝑥) is less than the product

of 𝑘 and 𝑔(𝑥).
Or in other words:
When 𝑥 is greater than a certain limit (which is 𝑥!), then the quotient |#(%)|

'(%)
 will always be less

than a certain constant value (which is 𝑘).

 4/7

2.1 Example 1:

𝑓(𝑥) = 5𝑥(+ 23𝑥 + 144																								𝑔(𝑥) = 𝑥(

𝑥 𝑓(𝑥) 𝑔(𝑥)
|𝑓(𝑥)|
𝑔(𝑥)

1 172 1 172.00
2 210 4 52.50
3 258 9 28.67
4 316 16 19.75
5 384 25 15.36
6 462 36 12.83
7 550 49 11.22
8 648 64 10.13
9 756 81 9.33
10 874 100 8.74
11 1002 121 8.28
12 1140 144 7.92
13 1288 169 7.62
14 1446 196 7.38
15 1614 225 7.17
16 1792 256 7.00
17 1980 289 6.85
18 2178 324 6.72
19 2386 361 6.61
20 2604 400 6.51

𝑓(𝑥) ∈ 𝒪(𝑔(𝑥)) is true, because:
 𝑘 𝑥!
When you choose 𝑘 = 7 then |𝑓(𝑥)| ≤ 𝑘 ∙ 𝑔(𝑥) for all 𝑥 > 16 or
when you choose 𝑘 = 200 then |𝑓(𝑥)| ≤ 𝑘 ∙ 𝑔(𝑥) for all 𝑥 > 1 or
when you choose 𝑘 = 5.1 then |𝑓(𝑥)| ≤ 𝑘 ∙ 𝑔(𝑥) for all 𝑥 > 237 or …

It doesn’t matter which pair of 𝑘 and 𝑥! can be used to make this relation become true. If there
is at least one such pair, this already is enough.

So: 5𝑥(+ 23𝑥 + 144		 ∈ 		𝒪(𝑥()

 5/7

2.2 Example 2:

𝑓(𝑥) = 5𝑥(+ 23𝑥 + 144																𝑔(𝑥) = 𝑥)

Now 𝑔(𝑥) grows much faster than in example 1, and therefore it is much easier for the term
𝑘 ∙ 𝑔(𝑥) to be greater than |𝑓(𝑥)|

This means, that also this is true: 5𝑥(+ 23𝑥 + 144		 ∈ 		𝒪(𝑥))

2.3 Counter example:

𝑓(𝑥) = 𝑥) + 5𝑥(+ 23𝑥 + 144

𝑔(𝑥) = 𝑥(

𝑥 𝑓(𝑥) 𝑔(𝑥)
|𝑓(𝑥)|
𝑔(𝑥)

1 173 1 173.000
2 218 4 54.500
3 285 9 31.667
4 380 16 23.750
5 509 25 20.360
6 678 36 18.833
7 893 49 18.224

7.75 1088 60 18.115
8 1160 64 18.125
9 1485 81 18.333

10 1874 100 18.740
20 10604 400 26.510
50 138794 2500 55.518

100 1052444 10000 105.244
200 8204744 40000 205.119
500 126261644 250000 505.047

1000 1005023144 1000000 1005.023
2000 8020046144 4000000 2005.012
5000 1.25125E+11 25000000 5005.005

10000 1.0005E+12 100000000 10005.002

|#(%)|
'(%)

 decreases at the beginning, but

then reaches a minimum somewhere
near 7.75 and then increases and
grows forever.

So, no matter how big you choose 𝑘,
there never will be any 𝑥! for which it
is true, that for every 𝑥 > 𝑥! the
relation |𝑓(𝑥)| ≤ 𝑘 ∙ 𝑔(𝑥) will be true.

And therefor:

𝑥) + 5𝑥(+ 23𝑥 + 144		 ∉ 		𝒪(𝑥()

2.4 Conclusion:

𝑓(𝑥) ∈ 𝒪(𝑔(𝑥)) means, that the rate of growth of function 𝑓(𝑥) is less or equal than the rate of
growth of 𝑔(𝑥). Or in other words: 𝑔(𝑥) is growing as fast or even faster than 𝑓(𝑥).

 6/7

3 Big 𝚯 (“big theta”)
Equivalent notations (they all mean the same):

𝑓(𝑥) ∈ Θ(𝑔(𝑥))

𝑓(𝑥) = Θ(𝑔(𝑥))
Formal definition

∃𝑘* > 0	∃𝑘(> 0	∃𝑥! > 0	∀𝑥 > 𝑥!:		𝑘* ∙ 𝑔(𝑥) ≤ |𝑓(𝑥)| ≤ 𝑘(∙ 𝑔(𝑥)

While in big O there was only an upper limit (which here became 𝑘(∙ 𝑔(𝑥)), now, in big theta
we also have a lower limit 𝑘* ∙ 𝑔(𝑥), and both limits are constant multiples of the same function
𝑔(𝑥).

This means:

 5𝑥(+ 23𝑥 + 144		 ∈ 		𝒪(𝑥))

but 5𝑥(+ 23𝑥 + 144		 ∉ 		Θ(𝑥))		

You will see big O and big theta quite often, because they are the most important symbols, but
there are also some others which are less often used:

4 Big 𝛀 (“big omega”)
Equivalent notations (they all mean the same):

𝑓(𝑥) ∈ Ω(𝑔(𝑥))
𝑓(𝑥) = Ω(𝑔(𝑥))

Formal definition
∃𝑘 > 0	∃𝑥! > 0	∀𝑥 > 𝑥!:		|𝑓(𝑥)| ≥ 𝑘 ∙ 𝑔(𝑥)

So, big omega defines a lower boundary. It is very rarely used in complexity theory.

5 Small symbols
There are also the symbols small o and small 𝜔 (“small omega”). They are defined similar to
their big cousins but are more restrict.

So, the arrows in
𝑓(𝑥) ∈ ℴ$𝑔(𝑥)) 	⟹ 		𝑓(𝑥) ∈ 𝒪$𝑔(𝑥))
𝑓(𝑥) ∈ 𝜔$𝑔(𝑥)) 	⟹ 		𝑓(𝑥) ∈ Ω$𝑔(𝑥))

only point from left to right, not in the other direction.

The small symbols are not used in complexity theory.

 7/7

6 Some important defining functions in big O notation
𝑓(𝑛) ∈ 𝒪(1) “constant”

𝑓(𝑥) is limited to a constant value. No matter how big 𝑛 grows, 𝑓(𝑛) will
never become greater than this constant value.
When the time complexity of an algorithm is constant, it means, that the
algorithm always terminates within a constant time, no matter how big it’s
input was.
Example: Test, if a given decimal number of any length is a multiple of 5.

𝑓(𝑛) ∈ 𝒪(log 𝑛) “logarithmic”
𝑓(𝑛) grows by roughly a constant amount if 𝑛 will be doubled.
Example: Perform a binary search in a sorted list of 𝑛 elements.

𝑓(𝑛) ∈ 𝒪$√𝑛) = 𝒪 O𝑛
!
"P “square root”

𝑓(𝑛) doubles if 𝑛 will be multiplied by 4.
Example: Number of divisions when performing a naïve primality test for
the number 𝑛.

𝑓(𝑛) ∈ 𝒪(𝑛+),			0 < 𝑐 < 1 “fractional power”
Generalized version of square root

𝑓(𝑛) ∈ 𝒪(𝑛) “linear”
𝑓(𝑛) doubles if you double 𝑛.
Example: Search an element in an unsorted list of 𝑛 elements.

𝑓(𝑛) ∈ 𝒪(𝑛 log 𝑛) “superlinear”, “loglinear”, “n log n”
𝑓(𝑛) grows faster than 𝒪(𝑛), but slower than 𝒪(𝑛+) for any 𝑐 > 1
Example: Perform a merge sort on a list of 𝑛 elements.

𝑓(𝑛) ∈ 𝒪(𝑛() “quadratic”
𝑓(𝑛) multiplies by 4 if you double 𝑛.
Example: Perform a bubble sort on a list of 𝑛 elements.

𝑓(𝑛) ∈ 𝒪(𝑛+), 𝑐 > 1 “polynomial”, “algebraic”
Generalized version of quadratic. Note, that 𝑐 don’t have to be an integer.
Also 𝑓(𝑛) ∈ 𝒪(𝑛*.!!!*) is polynomial (and slower than 𝑓(𝑛) ∈ 𝒪(𝑛 log 𝑛)).
A problem that can be solved with an algorithm who’s time complexity is
𝒪(𝑛+) is often called a “simple” problem.

𝑓(𝑛) ∈ 𝒪(2-) = 𝒪(𝑐-) “exponential”
𝑓(𝑛) doubles (multiplies by a constant factor) if you increase 𝑛 by 1.
A problem whose fastest solving algorithm has a time complexity of Ω(𝑒-)
is often called a “hard” problem.

