

St. Pölten University of Applied Sciences, Campus-Platz 1, 3100 St. Pölten, T: +43 (2742) 313 228, F: +43 (2742) 313 228-339, E: csc@fhstp.ac.at, I: www.fhstp.ac.at

Formal Languages and Automata
3
Theoretical Computer Science

Dipl.-Ing. Hubert Schölnast, BSc
September 20, 2021

 2/11

Table of Contents
5 Type 1 grammars, languages and automata .. 3

5.1 Context-sensitive Grammars .. 3
5.1.1 Example for context-sensitive grammar ... 4

5.2 Linear Bounded Automaton (LBA) .. 5
5.2.1 Determinism .. 7

6 Type 0 grammars, languages and automata .. 7

6.1 Unrestricted Grammars .. 7
6.2 Turing Machine ... 8

6.2.1 Structure of a non-deterministic Turing machine (NTM) 9
6.2.2 Structure of a deterministic Turing machine (DTM) .. 9
6.2.3 Example .. 10
6.2.4 Church–Turing thesis .. 11

 3/11

5 Type 1 grammars, languages and automata
Examples for languages that cannot be defined by context-free grammars and will not be
recognized by pushdown-automata:

n ℒ(𝐺) = {𝑤	|	𝑤 = 𝑎!𝑏!𝑐!, 𝑛 ∈ ℕ}
n ℒ(𝐺) = {𝑤∗𝑤∗	|	𝑤 ∈ 𝛴∗}
n ℒ(𝐺) = {𝑤	|	𝑤 = 𝑎#, 𝑝	is	prime}

When a context-free grammar creates a word, there always is only exactly 1 point where the
word is growing. But creating a languages like 𝑎!𝑏!𝑐! or 𝑤∗𝑤∗ is impossible, if there is only 1
point of growth.

A PDA has a memory, but it cannot multiply numbers, and therefore it has no idea what a prime
number is. So, it will always be impossible for a PDA to recognize languages where the length
of every word is a prime number.

So, when we want to have a more elaborate model of a computer, we need a more elaborate
grammar.

5.1 Context-sensitive Grammars

Let us recall again the general definition of a grammar:

A grammar is a set with 4 elements:

𝐺 = {𝑉, 𝛴, 𝑃, 𝑆}

n 𝐺 = a grammar
n 𝑉 = the alphabet of variables (auxiliary signs = non-terminal signs)
n 𝛴 = the alphabet of final (terminal) signs
n 𝑃 = the set of production rules
n 𝑆 = the start sign (actually a start word that consists of exactly 1 sign)

𝑉 and Σ are disjoint: 𝑉 ∩ 𝛴 = ∅
𝑆 is a word consisting of exactly one sign from 𝑉 (in most books written as 𝑆 ∈ 𝑉)
Each element of 𝑃 is a rule, and each rule looks like this:

𝑙 → 𝑟

with

𝑙 ∈ (𝑉 ∪ 𝛴)$	

𝑟 ∈ (𝑉 ∪ 𝛴)∗	

 4/11

Additional restrictions that define different Chomsky-types:

Type 3 (regular grammars):

𝑙 = 	𝐴; 		𝐴 ∈ 𝑉 |𝑙| = 1

𝑟 = G𝑎𝐵; 		𝑎 ∈ 𝛴, 𝐴 ∈ 𝑉𝜀																															
|𝑟| = 2
|𝑟| = 0

Type 2 (context-free grammars):

𝑙 = 	𝐴; 		𝐴 ∈ 𝑉																	 |𝑙| = 1
𝑟 ∈ (𝑉 ∪ 𝛴)∗ |𝑟| ≥ 0

Type 1 (context-sensitive grammars):

𝑙 ∈ (𝑉 ∪ 𝛴)$																			 |𝑙| ≥ 1
𝑟 ∈ (𝑉 ∪ 𝛴)∗ |𝑟| ≥ |𝑙|

Exception: You can have the rule 𝑆 → 𝜀 if for all other rules
𝑟 ∈ M(𝑉\{𝑆}) ∪ 𝛴O∗ which means "no 𝑆 in the right side of any rule"

5.1.1 Example for context-sensitive grammar

n 𝐺 = {𝑉, 𝛴, 𝑃, 𝑆}
n 𝛴 = {𝑎, 𝑏, 𝑐}
n 𝑉 = {𝐴, 𝐵, 𝐶}
n P = {𝐴 → 𝑎𝐴𝐵𝐶	|	𝑎𝐵𝐶, 𝐶𝐵 → 𝐵𝐶, 𝑎𝐵 → 𝑎𝑏, 𝑏𝐵 → 𝑏𝑏, 𝑏𝐶 → 𝑏𝑐, 𝑐𝐶 → 𝑐𝑐}
n 𝑆 = 𝐴

Production rules with numbers

1 			𝐴 → 𝑎𝐴𝐵𝐶
2 			𝐴 → 𝑎𝐵𝐶
3 𝐶𝐵 → 𝐵𝐶
4 𝑎𝐵 → 𝑎𝑏
5 𝑏𝐵 → 𝑏𝑏
6 𝑏𝐶 → 𝑏𝑐
7 𝑐𝐶 → 𝑐𝑐

 5/11

Let's try some runs

rule word
 𝐴 ∉ 𝛴∗
2 𝐴 → 𝑎𝐵𝐶 ↓
 𝑎𝐵𝐶 ∉ 𝛴∗
4 𝑎𝐵 → 𝑎𝑏 ↓
 𝑎𝑏𝐶 ∉ 𝛴∗
6 𝑏𝐶 → 𝑏𝑐 ↓
 𝑎𝑏𝑐 ∈ 𝛴∗

rule word

 𝐴 ∉ 𝛴∗
1 𝐴 → 𝑎𝐴𝐵𝐶 ↓
 𝑎𝐴𝐵𝐶 ∉ 𝛴∗
2 𝐴 → 𝑎𝐵𝐶 ↓
 𝑎𝑎𝐵𝐶𝐵𝐶 ∉ 𝛴∗
3 𝐶𝐵 → 𝐵𝐶 ↓
 𝑎𝑎𝐵𝐵𝐶𝐶 ∉ 𝛴∗
4 𝑎𝐵 → 𝑎𝑏 ↓
 𝑎𝑎𝑏𝐵𝐶𝐶 ∉ 𝛴∗
5 𝑏𝐵 → 𝑏𝑏 ↓
 𝑎𝑎𝑏𝑏𝐶𝐶 ∉ 𝛴∗
6 𝑏𝐶 → 𝑏𝑐 ↓
 𝑎𝑎𝑏𝑏𝑐𝐶 ∉ 𝛴∗
7 𝑐𝐶 → 𝑐𝑐 ↓
 𝑎𝑎𝑏𝑏𝑐𝑐 ∈ 𝛴∗

rule word

 𝐴 ∉ 𝛴∗
1 𝐴 → 𝑎𝐴𝐵𝐶 ↓
 𝑎𝐴𝐵𝐶 ∉ 𝛴∗
1 𝐴 → 𝑎𝐴𝐵𝐶 ↓
 𝑎𝑎𝐴𝐵𝐶𝐵𝐶 ∉ 𝛴∗
2 𝐴 → 𝑎𝐵𝐶 ↓
 𝑎𝑎𝑎𝐵𝐶𝐵𝐶𝐵𝐶 ∉ 𝛴∗
3 𝐶𝐵 → 𝐵𝐶 ↓
 𝑎𝑎𝑎𝐵𝐶𝐵𝐵𝐶𝐶 ∉ 𝛴∗
3 𝐶𝐵 → 𝐵𝐶 ↓
 𝑎𝑎𝑎𝐵𝐵𝐶𝐵𝐶𝐶 ∉ 𝛴∗
3 𝐶𝐵 → 𝐵𝐶 ↓
 𝑎𝑎𝑎𝐵𝐵𝐵𝐶𝐶𝐶 ∉ 𝛴∗
4 𝑎𝐵 → 𝑎𝑏 ↓
 𝑎𝑎𝑎𝑏𝐵𝐵𝐶𝐶𝐶 ∉ 𝛴∗
5 𝑏𝐵 → 𝑏𝑏 ↓
 𝑎𝑎𝑎𝑏𝑏𝐵𝐶𝐶𝐶 ∉ 𝛴∗
5 𝑏𝐵 → 𝑏𝑏 ↓
 𝑎𝑎𝑎𝑏𝑏𝑏𝐶𝐶𝐶 ∉ 𝛴∗
6 𝑏𝐶 → 𝑏𝑐 ↓
 𝑎𝑎𝑎𝑏𝑏𝑏𝑐𝐶𝐶 ∉ 𝛴∗
7 𝑐𝐶 → 𝑐𝑐
 𝑎𝑎𝑎𝑏𝑏𝑏𝑐𝑐𝐶 ∉ 𝛴∗
7 𝑐𝐶 → 𝑐𝑐 ↓
 𝑎𝑎𝑎𝑏𝑏𝑏𝑐𝑐𝑐 ∈ 𝛴∗

ℒ(𝐺) = {𝑎𝑏𝑐, 𝑎𝑎𝑏𝑏𝑐𝑐, 𝑎𝑎𝑎𝑏𝑏𝑏𝑐𝑐𝑐, 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐, 𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐𝑐,⋯ }

ℒ(𝐺) = {𝑤	|	𝑤 = 𝑎!𝑏!𝑐!}
As you can see, this grammar produces exactly one of the languages that cannot be formed
with context-free grammars. You need the context and you need to be able to change the
context to form words from this language.

5.2 Linear Bounded Automaton (LBA)

The automaton that is associated with context-sensitive languages is called "linear bounded
automaton". But because it is just a linear bounded version of a Turing machine, you also will
find the term "linear bounded Turing machine". So, both terms mean the same.

A linear bounded automaton (LBA) looks very similar to the pushdown automaton (PDA), but
there are some important differences:

 6/11

First of all: A LBA has no stack and therefore no stack bottom sign. Instead this type of machine
uses the tape not only to read the input, but it uses the tape also as it's memory, This means,
this machine can write signs to the tape.

The head, which is now a read-write-head, can not only move to the right, it also can move to
the left, or it can stay where it was.

The tape still has a fixed and limited length, like in PDA and FSM, but now, both ends are
marked with special signs, similar to the stack bottom sign. If you want you can add these signs
explicitly to a PDS or FSM too, but this will not change how these machines work. The LBA
can read this signs, but this signs cannot be replaced by other signs. This signs also cannot
be written to other positions, and the head cannot move beyond these signs.

The total number of characters on the tape between the two end marks can be either the length
of the input word or the result of any linear function from that length.

𝑙%&#' = 𝑎 ∙ 𝑙(!#)%								𝑎 ≥ 1

This means, that the usable "memory" of this type of machine is as big as you want, but it is
still limited. This may sound like a contradiction, but it isn't.

Here is why: Let's say, you can use this automaton to solve a problem for an input that is
𝑙(!#)% = 10 signs long and to solve this problem you need 𝑙%&#' = 40 signs on the tape. So,
𝑎 = 4. If your problem is of a kind, where you need a maximum number of 400 signs to solve
the problem for an input length of 100 signs, then it can be solved with a linear bounded
automaton, and then there is a context-sensitive grammar to describe the problem.

 7/11

But when you need 𝑙%&#' > 1,000,000 signs on the tape to solve a the problem for 𝑙(!#)% = 100,
then this problem belongs to a class that cannot be solved on a linear bounded automaton.

Since this type of automaton is a Turing machine with a limited tape, it makes more sense to
talk about this type of automaton in the section about type 0 automata. But there still is
something to say specifically about LBAs:

5.2.1 Determinism

The state machine in an LBA can be deterministic or nondeterministic.

For type 3 automata (finite state machines) you have seen an algorithm that allows to convert
any NFSM to a DFSM that can recognize exactly the same language. And this means, that
there is no difference between nondeterministic and deterministic regular languages.

For type 2 automata (pushdown automata) you have seen, that there are some languages
produced by context-free grammars where it is impossible to recognize them with a
deterministic machine (an example for these languages are palindromes). As a consequence,
the set of deterministic context-free languages is a proper subset of the set of all context-free
languages, which therefor also is often named "nondeterministic context-free languages".

So, how is this situation with type 1 automata (LBA)?

Well, this still is a subject of research where nobody has found an answer yet.

n Until now, nobody found an algorithm that would make it possible to convert every
nondeterministic context-sensitive grammar into a deterministic context-sensitive
grammar. But only the existence of such an algorithm would prove, that deterministic and
nondeterministic languages are equal.

n Until now, nobody found a context-sensitive language, that could not be recognized by a
deterministic linear bounded automaton. But only the existence of such a language would
prove, that deterministic and nondeterministic languages are different.

6 Type 0 grammars, languages and automata

6.1 Unrestricted Grammars

Unrestricted grammars are grammars where no additional constraints are added

Type 0 (unrestricted grammars):

𝑙 ∈ (𝑉 ∪ 𝛴)$																			 |𝑙| ≥ 1
𝑟 ∈ (𝑉 ∪ 𝛴)∗ |𝑟| ≥ 0

No exceptions: Anything is allowed.

 8/11

There is not much to say about unrestricted grammars, and also in other textbooks unrestricted
grammars are hardly mentioned, and you will not find explicit examples for proper unrestricted
grammars, i.e. for type-0-grammars that are not type-1-grammars. This is because the magic
that is in type 0 of Noam Chomsky's hierarchy is not in the grammar but in the automaton.

6.2 Turing Machine

This automaton is named after the British logician, mathematician, cryptanalyst, and computer
scientist Alan Turing (1912-1954). He is one of the most important pioneers in computer
science. During World War II, he was instrumental in deciphering German radio messages
encrypted with the German Enigma rotor cipher machine, but also his contributions to
theoretical biology also proved to be groundbreaking.

There are many variations of definitions of a Turing machine. The most common is this:

 9/11

A Turing machine is a LBA where the tape has no limits. Every position on the tape has a left
and a right neighbor, and the head can move in both directions as far as it wants. (The head
moves just 1 position in every single step. But step by step it can go as far as it wants.)

6.2.1 Structure of a non-deterministic Turing machine (NTM)

𝐴 is a non-deterministic Turing machine (NTM), and every NTM is a set with exactly 7
elements:

𝐴 = {𝑍, 𝑍*, 𝐸, 𝛴, 𝛤, 𝛿, #}

𝑍 is the set of all states (the cardinality of 𝑍 is finite)
𝑍* is the initial state 𝑍* ∈ 𝑍
𝐸 is the set of all accepting states. 𝐸 ⊆ 𝑍
𝛴 is the input alphabet. Only signs from this alphabet can be used to write the input word
𝛤 is the work alphabet. The automaton can write signs from this alphabet on any position of

the tape. 𝛤 is a proper superset of 𝛴 (𝛤 ⊃ 𝛴). As all alphabets also 𝛤 (and therefore also
its subset 𝛴) is a finite set.

𝛿 is a relation: 𝛿 ⊆ (𝑍 × 𝛤) × (𝑍 × 𝛤 × {𝐿, 𝐻, 𝑅}) It takes as "input" an element from the
Cartesian product 𝑍 × 𝛴 (a combination of state and sign) and produces as "output" zero,
one or many combinations of a new state, a new sign and a direction (left, halt, right).

is the blank sign. Before the machine starts to operate, the entire tape is filled with this
blank sign, only the section where the input is written contains other signs. The blank sign
is a member of 𝛤 but not of 𝛴: # ∈ 𝛤, # ∉ 𝛴

6.2.2 Structure of a deterministic Turing machine (DTM)

As before, but

𝛿 is a function: 𝛿: (𝑍 × 𝛤) → (𝑍 × 𝛤 × {𝐿, 𝐻, 𝑅}) It takes as "input" an element from the
Cartesian product 𝑍 × 𝛴 (a combination of state and sign) and produces as "output" a new
state, a new sign and a direction (left, halt, right).

 10/11

6.2.3 Example

n TM = {𝑍, 𝑍*, 𝐸, 𝛴, 𝛤, 𝛿, #}
n 𝑍 = e①,②,③,④j
n 𝑍* =①
n 𝐸 = e④j
n 𝛴 = {0,1}
n 𝛤 = e0,1, ⎵j

n 𝛿 =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧M①, 0O → M①, 0, RO,
M①, 1O → M①, 1, RO,
M①,⎵O → M②,⎵, LO,
M②, 0O → M②, 1, LO,
M②, 1O → M③, 0, LO,
M②,⎵O → M④,⎵, HO,
M③, 0O → M③, 0, LO,
M③, 1O → M③, 1, LO,
M③,⎵O → M④,⎵, HO,⎭

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

n # = ⎵

The same automaton, just in a different syntax:
 init: ①
 accept: ④

 ①,0
 ①,0,>

 ①,1
 ①,1,>

 ①,_
 ②,_,<

 ②,0
 ②,1,<

 ②,1
 ③,0,<

 ②,_
 ④,_,-

 ③,0
 ③,0,<

 ③,1
 ③,1,<

 ③,_
 ④,_,-

Go to https://turingmachinesimulator.com, copy the blue code from here, paste it into the
simulator, compile it, enter 1010 as input, press play and see what happens.

 11/11

About the programming language of the simulator:

n When this simulator compiles the program, it finds out what 𝑍, 𝛴 and 𝛤 are, so you don't
have to explicitly specify them. You just have to specify 𝑍* (init), 𝐸 (accept) and 𝛿 (the rest
of the program).

n # is always a blank in the tape but an underline character (_) in the program.
n The simulator uses different names for the directions in which the head can move:

n R is >
n L is <
n H is -

Each element of the function is written in two lines in the program. The first line is for what we
have written in the first pair of brackets, this is the condition under which this rule can be
applied. The second line tells the machine what to do when this condition is true, this is what
we have written in the second bracket.

This Turing machine accepts all binary numbers and rejects any string that is not a binary
number. This means, that this Turing machine accepts a regular language that can be written
with this regular expression:

(0|1) ∗

This is not really exciting. Also the grammar is just a boring regular grammar.

But did you notice what happened in the tape? Enter different binary strings and compare it
with the string that stands in the tape at the end.

This is what Turing machines are about: They can compute. A Turing machine is a computer
and 𝛿 is its program. And it's not just a simple programmable pocket calculator. A Turing
machine is an universal computer:

6.2.4 Church–Turing thesis

Named after Alan Turing and Alonzo Church (1903-1995), American mathematician, logician
and philosopher and PhD-supervisor of Alan Turing.

The class of Turing-computable functions coincides with the class of intuitively computable
functions.

In other words:

Everything that can be computed can be computed on a Turing machine.

