

St. Pölten University of Applied Sciences, Campus-Platz 1, 3100 St. Pölten, T: +43 (2742) 313 228, F: +43 (2742) 313 228-339, E: csc@fhstp.ac.at, I: www.fhstp.ac.at

Formal Logics
Theoretical Computer Science

Dipl.-Ing. Hubert Schölnast, BSc
October 04, 2021

 2/17

Table of Contents
1 Propositional Logic ... 3

1.1 Propositional Formulas ... 3
1.1.1 A formal language for propositional formulas ... 3
1.1.2 Semantics and pragmatics ... 4
1.1.3 Truth tables ... 4

1.2 Basic concepts ... 5
1.2.1 satisfiable .. 5
1.2.2 valid .. 6
1.2.3 contradictory ... 7
1.2.4 Summary .. 7

1.3 How can we check that? ... 7
1.3.1 Truth tables ... 7
1.3.2 By proof .. 9

1.4 Propositional logic is decidable .. 11

2 Predicate logic ... 11

2.1 Predicates ... 11
2.1.1 Examples .. 11

2.2 Quantifiers .. 11
2.2.1 Examples .. 12

2.3 Predicate logic functions ... 12
2.4 Operators .. 12
2.5 Syntax ... 13

2.5.1 Term ... 13
2.5.2 Formula ... 13
2.5.3 bound variables .. 14

2.6 Examples .. 14
2.7 satisfiable – valid – contradictory .. 15

2.7.1 Proof rules .. 15
2.8 Universe of discourse ... 16

2.8.1 Example .. 16
2.9 Decidability ... 17

 3/17

1 Propositional Logic

1.1 Propositional Formulas

Remember this picture from the lecture about semiotics:

We still will strictly separate syntax (how can signs be arranged) from semantics (what is the
meaning of the formula that is made from these signs).

1.1.1 A formal language for propositional formulas

We start in the world of syntax only, i.e. for a moment, we don't care about the meaning.

There is a language of propositional formulas, and each word, that belongs to this language is
a propositional formula. We could define this language with a grammar as described in the
textbook about formal languges, but this here is a little bit simpler:

Logic variables

Any logic variable is by itself a propositional formula. They are often written as lowercase Latin
characters (𝑎, 𝑏, 𝑐,⋯), but for our purposes it's easier to use always the same character (an 𝑎)
with indices (𝑎!, 𝑎", 𝑎#, ⋯).

Transition relation

If 𝜓 and 𝜑 are propositional formulas, these sequences of signs are propositional formulas too:

n (¬𝜓) and (¬𝜑)
n (𝜓 ∨ 𝜑)
n (𝜓 ∧ 𝜑)

Convenient signs and transition relations

Some formulas can be written with less signs if you add additional signs and transition rules,
for example:

If 𝜓 and 𝜑 are propositional formulas, these two sequences can be replaced by each other:
n (¬𝜓) ∨ 𝜑
n 𝜓 → 𝜑

 4/17

It is possible to add much more of these convenient signs and rules, but none of them are
really needed. The 5 signs ¬, ∨, ∧, (and), together with the signs for logic variables and the
"original" rules are fully sufficient.

Priority rules

The grammar produces a lot of brackets. If we define priorities, we need less brackets later,
when we assign meanings to the words of this language:

n priority 1 (highest priority): (and)
n priority 2: ¬
n priority 3: ∧
n priority 4 (lowest priority): ∨

Note, that in some programming languages ∧ and ∨ have the same priority, and in some others
even ∨ has a higher priority than ∧.

1.1.2 Semantics and pragmatics

Let's find a method to assign meaning to the strings. We do this by defining an interpretation
function 𝑏:

𝑏:	{𝑎$ 	|	𝑖 ∈ ℕ} ⟶ {𝑡, 𝑓}

Semantics: Each logical variable is assigned exactly one value from the set {𝑡, 𝑓}

Pragmatics:

n 𝑡 shall be interpreted as "true"
n 𝑓 shall be interpreted as "false"

This interpretation is typical for Boolean algebra (introduced by George Boole, 1815-1864, a
self-taught English mathematician, logician and philosopher).

Every Boolean interpretation 𝑏 can be extended to formulas in the following way:

if then if then

 𝑏(𝜓) = 𝑓 𝑏(¬𝜓) = 𝑡
0
0
0

 𝑏(𝜓) = 𝑡 𝑏(¬𝜓) = 𝑓

𝑏(𝜓) = 𝑡 or 𝑏(𝜑) = 𝑡
(or if the interpretations
of both formulas are 𝑡)

𝑏:(𝜓 ∨ 𝜑); = 𝑡 000000 𝑏(𝜓) = 𝑓 and 𝑏(𝜑) = 𝑓 𝑏:(𝜓 ∨ 𝜑); = 𝑓

𝑏(𝜓) = 𝑡 and 𝑏(𝜑) = 𝑡 𝑏:(𝜓 ∧ 𝜑); = 𝑡
𝑏(𝜓) = 𝑓 or 𝑏(𝜑) = 𝑓

(or if the interpretations
of both formulas are 𝑓)

𝑏:(𝜓 ∧ 𝜑); = 𝑓

1.1.3 Truth tables

These semantic rules can be written clearer in truth tables. (See document "Truth Tables")

 5/17

1.2 Basic concepts

1.2.1 satisfiable

A formula 𝜓 (a string that is a word of the language of propositional formulas) is called
"satisfiable" if 𝑏(𝜓) = 𝑡 for at least one interpretation of 𝜓.

In other words:

If you can find at least one combination of interpretations for the logical variables in 𝜓, such
that the interpretation of 𝜓 is 𝑡, then 𝜓 is satisfiable.

If 𝜓 is not equivalent to ⊥, it is satisfiable. Only if 𝜓 is equivalent to ⊥, it is unsatisfiable.

Examples:

Logical variables are 𝑎! and 𝑎".

S1. Is 𝑎! satisfiable?
This is trivial: Choose the interpretation 𝑏(𝑎!) = 𝑡 for the variable 𝑎! and then the
interpretation of the whole formula 𝑎! which is 𝑏(𝑎!) will also be 𝑡:

𝑏(𝑎!) = 𝑡				 ⟹ 				𝑏(𝑎!) = 𝑡
So, the answer is: yes!

S2. Is ¬𝑎! satisfiable?
This is also (almost) trivial: Choose the interpretation 𝑏(𝑎!) = 𝑓 for the variable 𝑎! and
then the interpretation of the whole formula ¬𝑎! which is 𝑏(¬𝑎!) will become 𝑡:

𝑏(𝑎!) = 𝑓				 ⟹ 				𝑏(¬𝑎!) = 𝑡
So, the answer is: yes!

S3. Is :(¬𝑎!) ∧ 𝑎!; satisfiable?
The variable 𝑎! appears twice in this formula. If this is the case for any variable, then all
instances of this variable have the same interpretation.

Let's try the interpretation 𝑏(𝑎!) = 𝑡:

In this case we have 𝑏(¬𝑎!) = 𝑓 and therefore also 𝑏:(¬𝑎!); = 𝑓 but we also have
𝑏(𝑎!) = 𝑡. The last line in the table in 1.1.2 says, that the interpretation of (𝜓 ∧ 𝜑) is 𝑓 if
either 𝑏(𝜓) = 𝑓 or 𝑏(𝜑) = 𝑓 (or if the interpretations of both formulas are 𝑓). Here we
have

𝜓 = (¬𝑎!)
𝑏(𝜓) = 𝑏:(¬𝑎!); = 𝑓

and therefor
𝑏:(𝜓 ∧ 𝜑); = 𝑏 >:(¬𝑎!) ∧ 𝑎!;? = 𝑓

But we have another chance. We can also try 𝑏(𝑎!) = 𝑓 . Then 𝑏:(¬𝑎!); = 𝑡 but
𝑏(𝑎!) = 𝑓 and so we again have 𝑏:(𝜓 ∧ 𝜑); = 𝑏 >:(¬𝑎!) ∧ 𝑎!;? = 𝑓

So, the answer is: no!

 6/17

1.2.2 valid

A formula 𝜓 (a string that is a word of the language of propositional formulas) is called "valid"
if 𝑏(𝜓) = 𝑡 for all interpretations of 𝜓.

In other words:

If you can find at least one combination of interpretations for the logical variables in 𝜓, such
that the interpretation of 𝜓 is 𝑓, then 𝜓 is not valid.

If 𝜓 is equivalent to ⊤, it is valid. If 𝜓 is not equivalent to ⊤, it is not valid.

satisfiable vs. valid

To be satisfiable, it is sufficient to find at least one interpretation of the variables where the
whole formula is interpreted as 𝑡 . To be valid, this must be the case for every possible
interpretation of the variables. Therefore, all valid formulas are satisfiable. If a formula cannot
be satisfied, it cannot be valid.

Examples:

Logical variables are 𝑎! and 𝑎".

V1. Is 𝑎! valid?
If we interpret the variable 𝑎! as 𝑓 then the interpretation of the whole formula will also
be 𝑓:

𝑏(𝑎!) = 𝑓				 ⟹ 				𝑏(𝑎!) = 𝑓
So, we found an interpretation that makes the formula to be 𝑓. This means, that not all
interpretations of 𝑎! will result in an interpretation of the formula that is 𝑡. So, this formula
not valid.
The answer is: no!

V2. Is :(¬𝑎!) ∧ 𝑎!; valid?
We already have seen, that this formula is not satisfiable, so can't be valid.
The answer is: no!

V3. Is :(¬𝑎!) ∨ 𝑎!; valid?
Let's try the interpretation 𝑏(𝑎!) = 𝑡:

In this case the interpretation of ¬𝑎! is 𝑓 and therefor also 𝑏:(¬𝑎!); = 𝑓. The 2nd line in
the table in 1.1.2 says, that the interpretation of (𝜓 ∨ 𝜑) is 𝑡 if either 𝑏(𝜓) = 𝑡 or
𝑏(𝜑) = 𝑡 (or if both interpretations are 𝑡). Here we have

𝜑 = 𝑎!
𝑏(𝜑) = 𝑏(𝑎!) = 𝑡

and therefor
𝑏:(𝜓 ∨ 𝜑); = 𝑏 >:(¬𝑎!) ∨ 𝑎!;? = 𝑡

If we try 𝑏(𝑎!) = 𝑓 then 𝑏:(¬𝑎!); = 𝑡 (note, that 𝑏:(¬𝑎!); = 𝑏(𝜓)) and so we again have
𝑏:(𝜓 ∨ 𝜑); = 𝑏 >:(¬𝑎!) ∨ 𝑎!;? = 𝑡
We tried all possible interpretations, and in all cases the interpretation of the whole
formula was 𝑡. And this means, that this formula is valid:
The answer is: yes!

 7/17

1.2.3 contradictory

A formula 𝜓 (a string that is a word of the language of propositional formulas) is called
"contradictory" if 𝑏(𝜓) = 𝑡 for no interpretation of 𝜓.

:(¬𝑎!) ∧ 𝑎!; is a contradictory formula, because both, 𝑏(𝑎!) = 𝑡 and 𝑏(𝑎!) = 𝑓 , lead to
𝑏 >:(¬𝑎!) ∧ 𝑎!;? = 𝑓

All other examples shown above are not contradictory.

1.2.4 Summary

1.3 How can we check that?

1.3.1 Truth tables

n A formula is satisfiable if (and only if) the truth table contains 𝑡 in at least 1 row of the
formula column.

n A formula is valid (a tautology) if (and only if) the truth table contains 𝑡 in all rows of the
formula column.

n A formula is contradictory if (and only if) the truth table contains 𝑓 in all rows of the
formula column.

S1, V1

𝑎! 𝑎!
𝑡 𝑡
𝑓 𝑓

✅ satisfiable
❌ not valid
❌ not contradictory

S2

𝑎! (¬𝑎!)
𝑡 𝑓
𝑓 𝑡

✅ satisfiable
❌ not valid
❌ not contradictory

 8/17

S3, V2

𝑎! (¬𝑎!) ∧ 𝑎!
𝑡 𝑡
𝑓 𝑡

✅ satisfiable
✅ valid
❌ not contradictory

V3

𝑎! (¬𝑎!) ∨ 𝑎!
𝑡 𝑓
𝑓 𝑓

❌ not satisfiable
❌ not valid
✅ contradictory

New examples, with more than just 1 logic variable

𝑎! 𝑎" :¬(𝑎! ∧ 𝑎");
𝑡 𝑡 𝑓
𝑡 𝑓 𝑡
𝑓 𝑡 𝑡
𝑓 𝑓 𝑡

✅ satisfiable
❌ not valid
❌ not contradictory

𝑎! 𝑎" >:(¬𝑎!) ∨ (𝑎! ∧ 𝑎"); ∨ (¬𝑎")?
𝑡 𝑡 𝑡
𝑡 𝑓 𝑡
𝑓 𝑡 𝑡
𝑓 𝑓 𝑡

✅ satisfiable
✅ valid
❌ not contradictory

𝑎! 𝑎" 𝑎# A¬ >:(¬𝑎!) ∨ (𝑎! ∧ 𝑎"); ∨ :(¬𝑎") ∨ (¬𝑎#);?B

𝑡 𝑡 𝑡 𝑓
𝑡 𝑡 𝑓 𝑓
𝑡 𝑓 𝑡 𝑓
𝑡 𝑓 𝑓 𝑓
𝑓 𝑡 𝑡 𝑓
𝑓 𝑡 𝑓 𝑓
𝑓 𝑓 𝑡 𝑓
𝑓 𝑓 𝑓 𝑓

❌ not satisfiable
❌ not valid
✅ contradictory

 9/17

formula =

!¬#$%&𝑎! ∧ (¬𝑎")+ ∨ ¬&𝑎# ∧ (¬𝑎$)+- ∧ .¬%&𝑎% ∧ (¬𝑎&)+ ∨ ¬&𝑎' ∧ (¬𝑎()+-/0 ∧ %&𝑎) ∧ (¬𝑎!*)+ ∧ (𝑎! ∧ 𝑎%)-12

𝑎! 𝑎" 𝑎# 𝑎% 𝑎& 𝑎' 𝑎(𝑎) 𝑎* 𝑎!+ formula
𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑓
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 𝑓
𝑡 𝑡 𝑡 𝑓 𝑡 𝑡 𝑡 𝑓 𝑡 𝑡 𝑓
𝑡	 𝑡	 𝑡	 𝑓	 𝑡	 𝑡	 𝑡	 𝑓	 𝑡	 𝑓	 𝑡
𝑡 𝑡 𝑡 𝑓 𝑡 𝑡 𝑡 𝑓 𝑓 𝑡 𝑓
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 𝑓
𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓

✅ satisfiable
❌ not valid
❌ not contradictory

The truth table for 10 logical variables has 1024 rows. The formula is 𝑡 in only 1 row and false
in all other rows.

A simple hardware chip for a safety-critical system with 3 redundant controllers with 20 Boolean
input values per controller contains 60 variables. The truth table of the logical formula that
describes this system has 1.15 ∙ 10!) lines. More complex chips may need thousands of logical
variables. It is not possible to check such a huge truth table in reasonable time.

1.3.2 By proof

You work purely syntactically, and you apply some of the production rules of the grammar of
propositional logic to parts of the logic formula to make it shorter, so that you can reduce it to
known facts.

Direct proof

This shall be explained on an example:

n A: :𝑎! ∧ (𝑎" ∨ 𝑎#);
n B: :(𝑎! ∧ 𝑎") ∨ (𝑎! ∧ 𝑎#);

We want to proof that, if formula A is true, then also formula B must be true.

We only have 3 logic variables, so the both truth table would have just 8 lines, and it would be
easy to check if the columns of both formulas are equal or not, but we want to do it with a direct
proof here:

If 𝑏 >:𝑎! ∧ (𝑎" ∨ 𝑎#);? = 𝑡 then 𝑏(𝑎!) = 𝑡 and also 𝑏:(𝑎" ∨ 𝑎#); = 𝑡.

If 𝑏:(𝑎" ∨ 𝑎#); = 𝑡 then either 𝑏(𝑎") = 𝑡 or 𝑏(𝑎#) = 𝑡 (or both are true).

 10/17

Case 1: 𝑏(𝑎") = 𝑡

We found so far 𝑏(𝑎!) = 𝑡 and 𝑏(𝑎") = 𝑡. So, in B also (𝑎! ∧ 𝑎") must be true:

𝑏:(𝑎! ∧ 𝑎"); = 𝑡

In this case the interpretation of (𝑎! ∧ 𝑎#) doesn't matter. We have:

𝑏 >:(𝑎! ∧ 𝑎") ∨ (𝑎! ∧ 𝑎#);? = 𝑡

Case 2: 𝑏(𝑎#) = 𝑡

Now we know 𝑏(𝑎!) = 𝑡 and 𝑏(𝑎#) = 𝑡. So, 𝑏:(𝑎! ∧ 𝑎#); = 𝑡 and therefor:

𝑏 >:(𝑎! ∧ 𝑎") ∨ (𝑎! ∧ 𝑎#);? = 𝑡

qed.

Indirect proof

We use the same example. In an indirect proof we assume that the conjecture is wrong. If this
leads to a contradiction, the opposite must be true, which means it must be true.

So, we assume that there is an interpretation for all logic variables, such that
𝑏 >:𝑎! ∧ (𝑎" ∨ 𝑎#);? = 𝑡 and 𝑏 >:(𝑎! ∧ 𝑎") ∨ (𝑎! ∧ 𝑎#);? = 𝑓.

We assume 𝑏 >:(𝑎! ∧ 𝑎") ∨ (𝑎! ∧ 𝑎#);? = 𝑓 . That means, that 𝑏:(𝑎! ∧ 𝑎"); = 𝑓 and also
𝑏:(𝑎! ∧ 𝑎#); = 𝑓. We again have two cases:

Case 1: 𝑏(𝑎!) = 𝑓

In this case the interpretations of 𝑎" and 𝑎# doesn't matter, but if 𝑏(𝑎!) = 𝑓 then it's
impossible to have 𝑏 >:𝑎! ∧ (𝑎" ∨ 𝑎#);? = 𝑡. So, case 1 is impossible.

Case 1: 𝑏(𝑎!) = 𝑡

If 𝑏(𝑎!) = 𝑡 and 𝑏:(𝑎! ∧ 𝑎"); = 𝑓 then 𝑏(𝑎") = 𝑓

If 𝑏(𝑎!) = 𝑡 and 𝑏:(𝑎! ∧ 𝑎#); = 𝑓 then 𝑏(𝑎#) = 𝑓

If 𝑏(𝑎") = 𝑓 and 𝑏(𝑎#) = 𝑓 then 𝑏:(𝑎" ∨ 𝑎#); = 𝑓 but then also 𝑏 >:𝑎! ∧ (𝑎" ∨ 𝑎#);? = 𝑓

 So, also case 2 is impossible.

All cases are impossible, so the assumption 𝑏 >:𝑎! ∧ (𝑎" ∨ 𝑎#);? = 𝑡 and

𝑏 >:(𝑎! ∧ 𝑎") ∨ (𝑎! ∧ 𝑎#);? = 𝑓 must be wrong, and it must be true, that

𝑏 >:(𝑎! ∧ 𝑎") ∨ (𝑎! ∧ 𝑎#);? = 𝑡 if >:𝑎! ∧ (𝑎" ∨ 𝑎#);? = 𝑡.

qed.

There are more proof methods, not shown here.

 11/17

1.4 Propositional logic is decidable

Every propositional logic formula has a well-defined interpretation if the interpretations of the
variables are given. So it is always possible to decide unambiguously if a propositional logic
formula is satisfiable, valid or contradictory.

This can be done by constructing truth tables or with special proof systems for propositional
logic formulas called "SAT solvers".

2 Predicate logic
In natural language there is more than „not“, „and“, „or“ and „if – then“. We want to be able to
express not only elementary propositions, but propositions about quantities (sets), too. This
can be done in predicate logic.

2.1 Predicates

A predicate is a Boolean function, i.e. a function with the codomain {𝑡, 𝑓}.

2.1.1 Examples

Let 𝑥 be a variable. Then we can define the unary predicate

n 𝑆𝑡(𝑥)

and we can define for this particular predicate, that the value of this predicate is 𝑡 if 𝑥 is a
student. If 𝑥 is not a student (if 𝑥 is a person that is not a student, or if 𝑥 is an apple, the planet
Mars, the number 6 or anything else), then the value of this predicate is 𝑓. So, the value of
each predicate is always predefined. It is 𝑡 if the variable is an element of a given set (here the
set of all students), otherwise it's 𝑓.

We can define another unary predicate:

n 𝑇(𝑥) is 𝑡 if 𝑥 is a teacher (and it's 𝑓 if 𝑥 is something else but a teacher)

Let's try a binary predicate:

n 𝑂(𝑥, 𝑦) is 𝑡 if both, 𝑥 and 𝑦 are persons and if 𝑥 is older than 𝑦.

2.2 Quantifiers

There are two quantifiers:

n ∀ the all-quantifier	
n ∃ the existence-quantifier 	

 12/17

2.2.1 Examples

∀𝑥 A𝑆𝑡(𝑥) → >∃𝑦:𝑇(𝑦) ∧ 𝑂(𝑦, 𝑥);?B

Meaning: For all 𝑥 holds, that if 𝑥 is a Student, then there exists a 𝑦, such that 𝑦 is a Teacher
and 𝑦 (teacher) is Older than 𝑥 (student).

Or shorter: Every student has at least 1 teacher who is older than the student.

This is a predicate logic formula, and this formula again can be interpreted:

𝑏 O∀𝑥 A𝑆𝑡(𝑥) → >∃𝑦:𝑇(𝑦) ∧ 𝑂(𝑦, 𝑥);?BP ∈ {𝑡, 𝑓}

But before we talk about interpretation, let's introduce ...

2.3 Predicate logic functions

Let's say, we have these predicates

n 𝐶ℎ(𝑥) is 𝑡 if 𝑥 is a child
n 𝑀(𝑥, 𝑦) is 𝑡 if 𝑥 and 𝑦 are persons and if 𝑥 is the mother of 𝑦.
n 𝑂(𝑥, 𝑦) is 𝑡 if 𝑥 and 𝑦 are persons and if 𝑥 is older than 𝑦.

Then we can write this predicate logic formula

∀𝑎 A∀𝑏 >:𝐶ℎ(𝑎) ∧ 𝑀(𝑏, 𝑎); → 𝑂(𝑏, 𝑎)?B

(Meaning: Every mother is older than all of her children.)

This can be simplified by the use of a predicate logic function:

∀𝑎:𝐶ℎ(𝑎) → 𝑂(Mother(𝑎), 𝑎);

The codomain of the function Mother(𝑥) is not {𝑡, 𝑓}, so this function is not a predicate! The
codomain of this particular function is the set of all mothers (or any superset of this set). For
every 𝑥 that can be fed into this function, it will return this persons mother. This of course is
only possible if 𝑥 is a parson, so the domain of Mother(𝑥) is not the class of everything, but
only the set of persons.

2.4 Operators

We have the same operators as in prepositional logic:

n ¬ not
n ∧ and
n ∨ (inclusive) or
n → if ... then (this is a convenient operator. It can be written as a combination of ¬, ∧ and

 ∨ , but then the formulas would become much more complicated und hard to
 understand)

 13/17

2.5 Syntax

The language of predicate logic consists of Terms und Formulas only. The alphabet of this
language contains the following sets:

n 𝑃 the set of predicates
n 𝐹 the set of functions
n 𝐶 the set of constants (= nullary functions)
n 𝑉 the set of variables

2.5.1 Term

A term is one of these things:

n 𝑥 ∈ 𝑉 a variable
n 𝑐 ∈ 𝐶 a constant
n 𝑓(𝑡!, 𝑡", ⋯ , 𝑡,) ∈ 𝐹 a function where 𝑡!, 𝑡", ⋯ , 𝑡, are terms.

Example of a term

We define
𝑉 = {𝑥, 𝑦}
𝐶 = ℕ

𝐹 = {+,−,∙, sqr}
Then this is a correct term:

∙ :−:2,+(sqr(𝑥), 𝑦);, 𝑥;
We can interpret this term as

:2 − (𝑥" + 𝑦); ∙ 𝑥

2.5.2 Formula

A formula is one of these things:

n 𝑝(𝑡!, 𝑡", ⋯ , 𝑡,) ∈ 𝑃 a predicate where 𝑡!, 𝑡", ⋯ , 𝑡, are terms.
n (¬𝜑) where 𝜑 is a formula.
n (𝜑 ∧ 𝜓) where 𝜑 and 𝜓 are formulas.
n (𝜑 ∨ 𝜓) where 𝜑 and 𝜓 are formulas.
n (𝜑 → 𝜓) where 𝜑 and 𝜓 are formulas.
n :∀𝑥(𝜑); where 𝑥 is a variable (𝑥 ∈ 𝑉) and 𝜑 is a formula.
n :∃𝑥(𝜑); where 𝑥 is a variable (𝑥 ∈ 𝑉) and 𝜑 is a formula.

We again can define priorities when we interpret predicate logic functions:

n Priority 1 (highest priority): (and)
n Priority 2: ¬, ∀ and ∃
n Priority 3: ∧ and ∨
n Priority 4: →

 14/17

Example of a formula

we define:

n Walter is a constant
n 𝑓(𝑎) is a unary function, yielding the father of 𝑎
n 𝑆(𝑎, 𝑏) is a binary predicate for "𝑎 is son of 𝑏"
n 𝐵(𝑎, 𝑏) is a binary predicate for "𝑎 is brother of 𝑏"

Then this is a formula:
A∀𝑥 >𝑆:𝑥, 𝑓(𝑊𝑎𝑙𝑡𝑒𝑟); → 𝐵(𝑥,𝑊𝑎𝑙𝑡𝑒𝑟)?B	

Attention! The interpretation of this formula is only 𝑡 if 𝑥 is not Walter!

2.5.3 bound variables

We must make a difference between free variables and bound variables. For example in the
formula:

∀𝑥:𝐵(𝑥, 𝑦) → 𝑚𝑎𝑙𝑒(𝑥);	

𝑥 is a bound variable, it is bound by ∀𝑥. 𝑦 on the other hand is a free (unbounded) variable.

Only free variables can be substituted by terms. And in this case only terms are allowed, that
don't contain bound variables!

Given a formula 𝜑, a term 𝑡 and a variable 𝑥:

If we substitute the variable 𝑥 in the formula 𝜑 by the term 𝑡, we write: 𝜑[𝑡/𝑥]

This is allowed only if 𝑥 is a free variable!!!

2.6 Examples

Let's define some predicates:

n prime(𝑥) 𝑥 is a prime number
n book(𝑥) 𝑥 is a book
n person(𝑥) 𝑥 is a person
n reads(𝑥, 𝑦) 𝑥 reads 𝑦
n ≤ (𝑥, 𝑦) 𝑥 ≤ 𝑦
n = (𝑥, 𝑦) 𝑥 and 𝑦 are identic

Then we can write some predicate logic formulas:

1. There is a smallest prime number.
∃𝑛 >prime(𝑛) ∧ ∀𝑚:prime(𝑚) →≤ (𝑛,𝑚);?

2. Every book is read by at least one human.
∀𝑏 >book(𝑏) → ∃𝑚:person(𝑚) ∧ reads(𝑚, 𝑏);?

 15/17

3. Every human reads at least two books
∀𝑚 >𝑝𝑒𝑟𝑠𝑜𝑛(𝑚) → ∃𝑏!∃𝑏":𝑏𝑜𝑜𝑘(𝑏!) ∧ 𝑏𝑜𝑜𝑘(𝑏") ∧ ¬= (𝑏!, 𝑏") ∧ 𝑟𝑒𝑎𝑑𝑠(𝑚, 𝑏!) ∧ 𝑟𝑒𝑎𝑑𝑠(𝑚, 𝑏");?

2.7 satisfiable – valid – contradictory

These terms are defined equivalent to those in propositional logic. But in predicate logic truth
tables cannot be constructed – not even in theory – because we would have to test all possible
values of all variables of a formula:

∀𝑥	(…) we must test for all 𝑥 (infintely many!)

To test, if a predicate logic formula is satisfiable, valid or contractionary, there is only one way:
A proof.

2.7.1 Proof rules

These rules are just a selection. There are much more rules

n Equality

If two terms 𝑡! and 𝑡" are equal we can substitute a free variable 𝑥 in a formula 𝜑 by 𝑡! or
𝑡" as we like and it does not change anything in the formula.

𝑡! = 𝑡" 		→ 		𝜑[𝑡!/𝑥] = 𝜑[𝑡"/𝑥]

n Elimination of ∀

If a formula is valid for all 𝑥 then 𝑥 may be substituted by any arbitrary term.

∀𝑥(𝜑) 		→ 		𝜑[𝑡/𝑥]

n Introduction of ∃

If a formula is valid for any term 𝑡 then there must be at least one 𝑥, for which the formula
is valid.

𝜑[𝑡/𝑥] 		→ 		 ∃𝑥(𝜑)

There are also proof rules for the introduction of ∀ and the elimination of ∃ but they are a little
bit more complicated.

The next rules all seem quite logic if you think about them

n ¬∀𝑥(𝜑) ⟺ ∃𝑥(¬𝜑)
n ¬∃𝑥(𝜑) ⟺ ∀𝑥(¬𝜑)
n :∀𝑥(𝜑); ∧ :∀𝑥(𝜓); ⟺ :∀𝑥(𝜑 ∧ 𝜓);
n :∃𝑥(𝜑); ∨ :∃𝑥(𝜓); ⟺ :∃𝑥(𝜑 ∨ 𝜓);
n ∃𝑥:∃𝑦(𝜑); ⟺ ∃𝑦:∃𝑥(𝜑);
n ∀𝑥:∀𝑦(𝜑); ⟺ ∀𝑦:∀𝑥(𝜑);

 16/17

The next rules apply only if 𝑥 is not free in 𝜓:

n ∀𝑥(𝜑) ∧ 𝜓 ⟺ ∀𝑥(𝜑 ∧ 𝜓)
n ∀𝑥(𝜑) ∨ 𝜓 ⟺ ∀𝑥(𝜑 ∨ 𝜓)
n ∃𝑥(𝜑) ∧ 𝜓 ⟺ ∃𝑥(𝜑 ∧ 𝜓)
n ∃𝑥(𝜑) ∨ 𝜓 ⟺ ∃𝑥(𝜑 ∨ 𝜓)

2.8 Universe of discourse

In logic and philosophy of language, a universe of discourse is understood as the totality of
objects to which statements refer. Such statements are meaningful only if the meaning of
"object" is restricted to a particular domain, the universe of discourse. The extent and nature
of the restriction depend on the content and context of the statements. Therefore, there is not
only one universe of discourse, but different universes of discourse.

The term Universe of Discourse goes back to Augustus De Morgan (1847) and refers to the
range of objects (in the broadest sense) that are to be talked about at all.

Misunderstandings and disputes often arise in logic, as in everyday life, because people talk
at cross purposes about different things. Someone claims, for example, that there are no
winged horses. His counterpart rejects this with the reference to the Pegasus. Both move
mentally in different worlds. Their dispute can be settled if they agree on a common universe
of discourse, i.e. negotiate what the talk (discourse) should be about, whether only physically
existing horses or also mythical creatures.

So, in predicate logic we need a Universe of Discourse 𝒟 (what we are talking about) and a
function that maps the (syntactic) elements of the predicate logic onto the Universe of
Discourse 𝒟.

n Every constant maps to an element of 𝒟.
n Every 𝑛-ary function corresponds to a concrete 𝑛-ary function in 𝒟.
n Every 𝑛-ary predicate corresponds to a set of 𝑛-tuples over the elements of 𝒟 (those

tuples, for which the predicate is valid).

The Universe of Discourse together with this mapping is called a model.

2.8.1 Example

Assume a predicate logic contains a unary function 𝑚(𝑥), and a binary predicate 𝑗(𝑥, 𝑦).

One model (interpretation, semantics) could be:

𝒟 = {Max, Bob, Eva, Amy}

𝑚(𝑥) = {(Max, Eva), (Bob, Eva), (Amy, Eva), (Lea, Amy)}

𝑗(𝑥, 𝑦) = {(Max, Eva), (Bob, Eva), (Amy, Eva), (Max, Bob), (Bob, Lea)}

 17/17

In this model ∀𝑥:𝑚(𝑥); → 𝑗:𝑥,𝑚(𝑥); is valid.

𝑥 𝑚(𝑥) 𝑗:𝑥,𝑚(𝑥);

Max Eva ✅

Bob Eva ✅
Eva (not defined) (doesn't matter)
Amy Eva ✅

If we use a different universe of discourse, we get this situation:

n 𝒟 = {Max, Bob, Eva, Amy, Lea}

𝑥 𝑚(𝑥) 𝑗:𝑥,𝑚(𝑥);

Max Eva ✅

Bob Eva ✅
Eva (not defined) (doesn't matter)
Amy Eva ✅

Lea Amy ❌

2.9 Decidability

Remember, that propositional logic was decidable. But predicate logic is not. It is
semidecidable. This means: If a predicate logic formula is valid, it is always possible to proof
that this is the case. But if a predicate logic formula is invalid (if it's satisfiable but not valid or
even contradictory), then this can be proven only for some of these invalid formulas, but not
for all.

There is an algorithm that allows to enumerate all valid predicate logic formulas. And this
means that the cardinality of this set is ℵ+ which is the cardinality of all Turing machines. So,
there is a Turing machine for each valid predicate logic formula.

But it has been proven, that the cardinality of all invalid predicate logic formulas is greater than
ℵ+. So, there are more invalid predicate logic formulas than Turing machines, and this means,
that there must exist invalid predicate logic formulas for which there is no Turing machine that
could halt and tell that it's invalid.

