

St. Pölten University of Applied Sciences, Campus-Platz 1, 3100 St. Pölten, T: +43 (2742) 313 228, F: +43 (2742) 313 228-339, E: csc@fhstp.ac.at, I: www.fhstp.ac.at

Truth Tables
Theoretical Computer Science

Dipl.-Ing. Hubert Schölnast, BSc.
October 03, 2021

2/7

Table of Contents
1 Truth table for just one variable 𝑝 ... 3

2 Truth table for no input variables at all ... 3

3 Truth table for two input variables 𝑝 and 𝑞 ... 4

3.1 Implication .. 5

4 Size of Truth Tables .. 6

4.1 Any number of logic variables .. 7

3/7

1 Truth table for just one variable 𝑝

𝑓 = false
𝑡 = true

in out
𝑝 ⊥ 𝑝 ¬𝑝 ⊤
𝑓 𝑓 𝑓 𝑡 𝑡
𝑡 𝑓 𝑡 𝑓 𝑡

0 = false
1 = true

in out
𝑝 ⊥ 𝑝 ¬𝑝 ⊤
0 0 0 1 1
1 0 1 0 1

There are 4 possibilities for the output:
⊥ “Contradiction” is always false. Since it is independent from any input, it normally will

be written without any parameter. (You don’t have to write “⊥ 𝑝” just “⊥” is enough
because the contradiction is a 0-ary or constant function.)

𝑝 This just is 𝑝 itself, without any operators.
¬𝑝 “Not 𝑝”. This is the negation of 𝑝.
⊤ “Tautology” is always true. And like the contradiction normally written without a

parameter.

Because contradiction and tautology do not depend on 𝑝, and because the output 𝑝 is just a
copy the input, of these 4 possibilities only ¬𝑝 is really interesting. You just should know, that
for 1 input variable, you can define 4 different truth functions.

2 Truth table for no input variables at all

Since contradiction and tautology don’t need any input at all, you also can create a truth table
for no variables at all.

in out
 ⊥ ⊤
 𝑓 𝑡

in out
 ⊥ ⊤
 0 1

As you can see, for 0 input variables, you can define 2 different functions.

4/7

3 Truth table for two input variables 𝑝 and 𝑞

Even more interesting are the binary operators. They are called “binary” (Latin bis = double,
bini = twofold, binarius = consists of two) because they combine two input variables which
here shall be 𝑝 and 𝑞. (“Binary numbers” have their name also from the same Latin root,
because they are written with just two different digits, 0 and 1, but still binary operators are
not defined as operators for binary numbers. Binary operators are defined as operators
which take two variables as input.)

in out
𝑝 𝑞 ⊥ 𝑝 ∧ 𝑞 𝑝 ↛ 𝑞 𝑝 𝑝 ↚ 𝑞 𝑞 𝑝 ↮ 𝑞 𝑝 ∨ 𝑞 ¬(𝑝 ∨ 𝑞) 𝑝 ↔ 𝑞 ¬𝑞 𝑝 ← 𝑞 ¬𝑝 𝑝 → 𝑞 ¬(𝑝 ∧ 𝑞) ⊤
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

From these 16 possibilities 2 don’t depend on any input (⊥ and ⊤), 4 of them depend on only
one of the two input parameters (𝑝, 𝑞, ¬𝑝 and ¬𝑞) and the remaining 10 are “real” binary
operators.

Only 2 of them are really fundamental:

𝑝 ∧ 𝑞 “𝑝 and 𝑞” is only true if all input parameters are true. “𝑝 and 𝑞” is false if at least
one of its input variables is false. Other very common symbols are the dot 𝑝 ∙ 𝑞 and
the ampersand 𝑝	&	𝑞.

𝑝 ∨ 𝑞 “𝑝 or 𝑞” is already true if at least one of its input parameters is true. It only will
become false if all input parameters are false. Other very common symbols are the
plus sign 𝑝 + 𝑞 and the vertical bar 𝑝	|	𝑞.

Two others are just negations of “and” and “or”:

¬(𝑝 ∧ 𝑞) This operator is called “NAND” (Not + AND) and is the negation of the result of an
“and” operation. There also exists the symbol 𝑝 ↑ 𝑞, but it is used very rarely.

¬(𝑝 ∨ 𝑞) “NOR” (Not + OR) (In rare cases written as 𝑝 ↓ 𝑞.)

Three more operators are functions with their own symbols, but they can also be written as
combinations of ∧, ∨ and ¬:

𝑝 → 𝑞 “Implication”. See section 3.1 for more details.
One way to write 𝑝 → 𝑞 as a combination of of “∧”, “∨” and “¬” is “¬(𝑝 ∧ ¬𝑞)”.
Another one is “¬𝑝 ∨ 𝑞”.

𝑝 ← 𝑞 This is the converse implication. It can be written as “𝑝 ∨ ¬𝑞” or “¬(¬𝑝 ∧ 𝑞)”.

𝑝 ↔ 𝑞 This has many names. Commonly used names are “biconditional” but also
“equality”. This function is true if 𝑝 and 𝑞 have the same truth values. If 𝑝 and 𝑞
have different truth values, 𝑝 ↔ 𝑞 is false.
It can be written as “(𝑝 → 𝑞) ∧ (𝑝 ← 𝑞)” which is equivalent to “(𝑝 ∧ 𝑞) ∨ (¬𝑝 ∧ ¬𝑞)”

5/7

The remaining three functions are negations of the previous three:

𝑝 ↛ 𝑞 “Negated implication”. It is the negation of the implication: ¬(𝑝 → 𝑞).
As a combination of of “∧”, “∨” and “¬” this is “𝑝 ∧ ¬𝑞” or “¬(¬𝑝 ∨ 𝑞)”.

𝑝 ↚ 𝑞 “Negated converse implication” ¬(𝑝 ← 𝑞).
“¬𝑝 ∧ 𝑞” or “¬(𝑝 ∨ ¬𝑞)”.

𝑝 ↮ 𝑞 “Exclusive Or”. It can be defined as the negation of equality: ¬(𝑝 ↔ 𝑞). But more
often it is defined as that version of an “or”-Operation, that is true if either 𝑝 or 𝑞 is
true, but not when both of them are true (in which case 𝑝 ↮ 𝑞 is false). And because
of this close relation to the “normal” OR, this function is also well known as XOR and
there also is a very common alternate symbol: 𝑝	⨁	𝑞.

3.1 Implication

The function 𝑝 → 𝑞 needs some explanation:

“𝑝 implies 𝑞” or “if 𝑝 then 𝑞” means: If 𝑝 is true, then the expression 𝑝 → 𝑞 will inherit its value
from 𝑞. But if 𝑝 is false, then the expression will be true. This may seem counterintuitive at first
sight, so let’s make it clear with an example:

Let 𝑝 = “It is raining” and 𝑞 = “Streets are wet”.

Let’s first see, what happens if 𝑝 = 𝑡 (true) (It is raining):
n 𝑝 = 𝑡, 𝑞 = 𝑡: “It is raining, and the streets are wet.”

This is true: (𝑡 → 𝑡) = 𝑡
n 𝑝 = 𝑡, 𝑞 = 𝑓: “It is raining, and the streets are not wet (streets are dry).”

This is not possible. Whenever it rains, you will see that the streets will become wet.
So, the statement “It is raining, and the streets aren’t wet” cannot be true. It is false:
(𝑡 → 𝑓) = 𝑓

This was easy, so now have a closer look to a sunny and warm day with dry weather:
n 𝑝 = 𝑓, 𝑞 = 𝑓: “It is not raining, and the streets aren’t wet.”

This is something, that you can observe almost every day: On a sunny and warm day
with dry weather also the streets are dry. So, the statement “It is not raining, and the
streets aren’t wet” is true: (𝑓 → 𝑓) = 𝑡

n 𝑝 = 𝑓, 𝑞 = 𝑡: “It is not raining, and the streets are wet.” Is it possible, that the streets
are wet although the weather is dry? Yes of course, this is possible. In many towns and
villages, the fire brigade spills water onto the streets on really hot days. And then, even
if there is no cloud up in the sky, the streets still are wet. So, a wet street is a possible
implication of dry weather, and this means: (𝑓 → 𝑡) = 𝑡.

6/7

4 Size of Truth Tables

No logic variables at all:

in out
 ⊥ ⊤
 0 1

1 row, 2 columns

1 logic variable:

in out
𝑝 ⊥ 𝑝 ¬𝑝 ⊤
0 0 0 1 1
1 0 1 0 1

2 rows, 4 columns

2 logic variables:

in out
𝑝 𝑞 ⊥ 𝑝 ∧ 𝑞 𝑝 ↛ 𝑞 𝑝 𝑝 ↚ 𝑞 𝑞 𝑝 ↮ 𝑞 𝑝 ∨ 𝑞 ¬(𝑝 ∨ 𝑞) 𝑝 ↔ 𝑞 ¬𝑞 𝑝 ← 𝑞 ¬𝑝 𝑝 → 𝑞 ¬(𝑝 ∧ 𝑞) ⊤
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

4 rows, 16 columns

3 logic variables:

in out
𝑎! 𝑎" 𝑎# 𝑓! 𝑓" 𝑓# ⋯ 𝑓#$% 𝑓#$& 𝑓#$$
0 0 0 0 0 0 ⋯ 1 1 1
0 0 1 0 0 0 ⋯ 1 1 1
0 1 0 0 0 0 ⋯ 1 1 1
0 1 1 0 0 0 ⋯ 1 1 1
1 0 0 0 0 0 ⋯ 1 1 1
1 0 1 0 0 0 ⋯ 1 1 1
1 1 0 0 0 1 ⋯ 0 1 1
1 1 1 0 1 0 ⋯ 1 0 1

8 rows, 256 columns

7/7

4.1 Any number of logic variables

Let's summarize the results:

variables rows columns

0	 1	 2	
1	 2	 4	
2	 4	 16	
3	 8	 256	

The pattern is very obvious:

variables rows columns

0	 1	 2	
1	 2	 4	
2	 4	 16	
3	 8	 256	
𝑛	 2'	 2#! 	

Any column in a truth table is a distinct logical formula. Every logical formula can be written as
combinations of logical variables and these three operators:
n not: ¬𝑝
n or: (𝑝 ∨ 𝑞)
n and: (𝑝 ∧ 𝑞)

